

Fan programming language:
Introduction

Chris Grindstaff
Barcamp 2008

What is Fan
 A human-centric

neighborhood in Richmond,
VA

 “Fan is designed as a
practical programming
language to make it easy
and fun to get real work
done. It is not an
academic language to
explore bleeding edge
theories, but based on solid
real world experience.”

Why should I care?

 You like learning languages
 You’re looking for Java 3000, ng, etc

 You think Scala is too complicated
 You have an insatiable thirst for knowledge
 You have nothing better to do on a

Saturday :-)

Features

 Statically and dynamically typed (with some
type inferencing)

 Closures
 Interesting concurrency model

 Immutability
 Message passing
 URI namespace (whiteboard)

Features
 Objects all the way down (no primitives)
 Mixins

 Similar to Ruby’s mixins / Java interfaces with implementation
 Facet support
 Nice set of APIs
 Code organization with Pods
 Tools

 Interpreter
 Build tools

 FWT (SWT UI toolkit for Fan)
 Reflection
 Serialization

 Subset of language
 Benevolent dictator model of development

Cons

 Java/.Net interop is weak at the moment
 No IDE support
 Virtual/override methods

Key concepts

 Pod (namespace and unit of deployment)
 Classes (single inheritance)
 Mixins (multiple inheritance / interfaces with

implementations)
 Slots

 Fields (accessed via methods, no need for getter/setter)
 Methods

 Slot names are unique

Simple data types

 “color = $from.color”
 “foo ${tree.get(4)}”
 r”c:\stuff\fan.txt”

 0xcafe_babe
 299_792_458
 6.32d

 500ms
 12s
 42min
 7days

 `the best report.doc`
 `http://gstaff.org`
 `/some/path/to/me.txt`

Strings with interpolation
and “raw” support

64 bit ints, floats, decimal

Durations URI

Simple data types (cont)

 Str#
 foo::MyType#
 Str#capitalize

 0..5 // [0,5]
 x…y // [x,y)
 0..myList.size

 [1,2,3] // Int[]
 [6, 7f, 8] // Num[]
 [3, “3”, [3,4]] //Obj[]
 [,] // empty list

 [2:”two”, 4:”four”]
 [“a”:[1,2], “b”:4sec]
 [:] //empty map

Types and slots Ranges

List Map
(keys must be immutable)

Sugar (yumm)
 a + b //a.plus(b)
 a[b] //a.get(b)
 a[b] = foo //a.set(b, foo)
 a[b] //a.slice(b)

 Safe invoke
 weight = aCar?.door(“left”)?.handle?.weight
 short-circuit message sends if any part is null

(at last count) 24 shortcut methods

Typing “Keep it simple”

 Method and field
signatures require
types

 Local vars, lists, and
maps are inferenced

Void add(Str first, Str last) {
 person := Person.make(first, last)
 person.age = 8
 people.add(person)
}

This fight(Obj enemy, Int weapon) {
 // Attack the opponent
 damage := rand(strength + weapon)
 echo("You hit for $ damage!")
 enemy -> hit(damage)
 ...
}

 The arrow “->” is not
compile time checked.

 The dot “.” is compile
time checked

 At runtime if the message
is not understood the
trap() method is called.
Like missing_method in
Ruby

Static Dynamic

Closures

 Real closures that capture local variables
 Basic syntax: |A a, B b...->R| { statements }
 Heavy use by List, Map, Thread

4.times |Int i| {echo(i)} //print 0 to 3

add := |Int a, Int b->Int| {return a + b}
add(3,4) //7

q := [1,2,3,4]
q.findAll |Int m->Bool| {return m % 2 == 0} //[2,4]

i := 0
f := |->Int| {return ++i}
echo(f()) //prints 1
echo(f()) //prints 2
echo(i) //prints 2

Concurrency
 No shared mutable state between threads
 Messaging passing of immutable state between

threads
 Immutable is a first class concept
 Each thread has a message queue

 Whiteboard creates a namespace of URIs for
threads to share state
 Thread.sendAsync
 Thread.sendSync
 Namespace.create
 Namespace.put

Concurrency (cont)

 Passing an object between threads
 The object must be either:

 Immutable – will be passed by reference
 Serializable – deep copy made and passed

svr := Thread("server") |Thread t| {
 t.loop |Obj msg->Obj| {
 echo("reflector received $msg")
 return msg
 }
}
svr.start

for (i:=0; i<50000; i++) {
 echo(“send " + svr.sendAsync(i))
}

Links

 Fan site
 http://www.fandev.org/

Acknowledgements

 Flickr for creative commons images
 Taberandrew

 Andrew and Brian Fan’s benevolent dictators
 Great docs out of the gate

Backup

Serialization
 Read/write objects to a stream
 Used to pass messages between threads
 Tree based not graph based (ugggh circular refs mean stack overflow)
 Syntax

 Easy to read
 Efficient
 Purely declarative / Fan is a complete superset of serialization format

@serializable
class Address {
 Str street; Str city; Str state
}
create one:

address := Address {
 street = "1801 Varsity Drive"
 city = "Raleigh"
 state = "NC”
}

out.writeObj(address)

results in:
AddressExample_0::Address{
street="1801 Varsity Drive"
city="Raleigh"
state="NC"
}

FWT

 Fan widget toolkit built atop SWT
 Makes heavy use of the serialization format

Window {
 title = "FWT Demo"
 bounds = Rect {x = 100; y = 100; w = 200; h = 75}
 Button {text = "Hello world"; onAction = |,| {echo("hi")}}
}.open

A button instance will be created and the “add” method called on
Window

	Fan programming language: Introduction
	What is Fan
	Why should I care?
	Features
	Slide 5
	Cons
	Key concepts
	Simple data types
	Simple data types (cont)
	Sugar (yumm)
	Typing “Keep it simple”
	Closures
	Concurrency
	Concurrency (cont)
	Links
	Acknowledgements
	Slide 17
	Serialization
	FWT

