

Fan programming language:
Introduction

Chris Grindstaff
Barcamp 2008

What is Fan
 A human-centric

neighborhood in Richmond,
VA

 “Fan is designed as a
practical programming
language to make it easy
and fun to get real work
done. It is not an
academic language to
explore bleeding edge
theories, but based on solid
real world experience.”

Why should I care?

 You like learning languages
 You’re looking for Java 3000, ng, etc

 You think Scala is too complicated
 You have an insatiable thirst for knowledge
 You have nothing better to do on a

Saturday :-)

Features

 Statically and dynamically typed (with some
type inferencing)

 Closures
 Interesting concurrency model

 Immutability
 Message passing
 URI namespace (whiteboard)

Features
 Objects all the way down (no primitives)
 Mixins

 Similar to Ruby’s mixins / Java interfaces with implementation
 Facet support
 Nice set of APIs
 Code organization with Pods
 Tools

 Interpreter
 Build tools

 FWT (SWT UI toolkit for Fan)
 Reflection
 Serialization

 Subset of language
 Benevolent dictator model of development

Cons

 Java/.Net interop is weak at the moment
 No IDE support
 Virtual/override methods

Key concepts

 Pod (namespace and unit of deployment)
 Classes (single inheritance)
 Mixins (multiple inheritance / interfaces with

implementations)
 Slots

 Fields (accessed via methods, no need for getter/setter)
 Methods

 Slot names are unique

Simple data types

 “color = $from.color”
 “foo ${tree.get(4)}”
 r”c:\stuff\fan.txt”

 0xcafe_babe
 299_792_458
 6.32d

 500ms
 12s
 42min
 7days

 `the best report.doc`
 `http://gstaff.org`
 `/some/path/to/me.txt`

Strings with interpolation
and “raw” support

64 bit ints, floats, decimal

Durations URI

Simple data types (cont)

 Str#
 foo::MyType#
 Str#capitalize

 0..5 // [0,5]
 x…y // [x,y)
 0..myList.size

 [1,2,3] // Int[]
 [6, 7f, 8] // Num[]
 [3, “3”, [3,4]] //Obj[]
 [,] // empty list

 [2:”two”, 4:”four”]
 [“a”:[1,2], “b”:4sec]
 [:] //empty map

Types and slots Ranges

List Map
(keys must be immutable)

Sugar (yumm)
 a + b //a.plus(b)
 a[b] //a.get(b)
 a[b] = foo //a.set(b, foo)
 a[b] //a.slice(b)

 Safe invoke
 weight = aCar?.door(“left”)?.handle?.weight
 short-circuit message sends if any part is null

(at last count) 24 shortcut methods

Typing “Keep it simple”

 Method and field
signatures require
types

 Local vars, lists, and
maps are inferenced

Void add(Str first, Str last) {
 person := Person.make(first, last)
 person.age = 8
 people.add(person)
}

This fight(Obj enemy, Int weapon) {
 // Attack the opponent
 damage := rand(strength + weapon)
 echo("You hit for $ damage!")
 enemy -> hit(damage)
 ...
}

 The arrow “->” is not
compile time checked.

 The dot “.” is compile
time checked

 At runtime if the message
is not understood the
trap() method is called.
Like missing_method in
Ruby

Static Dynamic

Closures

 Real closures that capture local variables
 Basic syntax: |A a, B b...->R| { statements }
 Heavy use by List, Map, Thread

4.times |Int i| {echo(i)} //print 0 to 3

add := |Int a, Int b->Int| {return a + b}
add(3,4) //7

q := [1,2,3,4]
q.findAll |Int m->Bool| {return m % 2 == 0} //[2,4]

i := 0
f := |->Int| {return ++i}
echo(f()) //prints 1
echo(f()) //prints 2
echo(i) //prints 2

Concurrency
 No shared mutable state between threads
 Messaging passing of immutable state between

threads
 Immutable is a first class concept
 Each thread has a message queue

 Whiteboard creates a namespace of URIs for
threads to share state
 Thread.sendAsync
 Thread.sendSync
 Namespace.create
 Namespace.put

Concurrency (cont)

 Passing an object between threads
 The object must be either:

 Immutable – will be passed by reference
 Serializable – deep copy made and passed

svr := Thread("server") |Thread t| {
 t.loop |Obj msg->Obj| {
 echo("reflector received $msg")
 return msg
 }
}
svr.start

for (i:=0; i<50000; i++) {
 echo(“send " + svr.sendAsync(i))
}

Links

 Fan site
 http://www.fandev.org/

Acknowledgements

 Flickr for creative commons images
 Taberandrew

 Andrew and Brian Fan’s benevolent dictators
 Great docs out of the gate

Backup

Serialization
 Read/write objects to a stream
 Used to pass messages between threads
 Tree based not graph based (ugggh circular refs mean stack overflow)
 Syntax

 Easy to read
 Efficient
 Purely declarative / Fan is a complete superset of serialization format

@serializable
class Address {
 Str street; Str city; Str state
}
create one:

address := Address {
 street = "1801 Varsity Drive"
 city = "Raleigh"
 state = "NC”
}

out.writeObj(address)

results in:
AddressExample_0::Address{
street="1801 Varsity Drive"
city="Raleigh"
state="NC"
}

FWT

 Fan widget toolkit built atop SWT
 Makes heavy use of the serialization format

Window {
 title = "FWT Demo"
 bounds = Rect {x = 100; y = 100; w = 200; h = 75}
 Button {text = "Hello world"; onAction = |,| {echo("hi")}}
}.open

A button instance will be created and the “add” method called on
Window

	Fan programming language: Introduction
	What is Fan
	Why should I care?
	Features
	Slide 5
	Cons
	Key concepts
	Simple data types
	Simple data types (cont)
	Sugar (yumm)
	Typing “Keep it simple”
	Closures
	Concurrency
	Concurrency (cont)
	Links
	Acknowledgements
	Slide 17
	Serialization
	FWT

